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Singularity Analysis with respect to the Workspace of 
a Double Parallel Manipulator 
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(Received July 5, 1998) 

Singularity analysis is an important issue in the design of parallel manipulators, since they 
become uncontrollable at singular configurations due to the rank deficiency of  the Jacobian. 
This paper analyzes the singularity of a double parallel manipulator with respect to its 

workspace. The workspace is decoupled into a positional workspace generated by the first 
parallel mechanism, and an orientational workspace by the second mechanism. The singularities 
occurring outside each workspace are analytically found by a Jacobian matrix derived for the 
velocity transformation from the end-effecfor to the linear actuators. The singularity loci are 

presented and their geometric properties are examined to prove that the double parallel 

manipulator is free from the singularity problem. 
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1. Introduct ion  

In comparison with serial manipulators, paral- 

lel manipulators have several advantages such as 
load-carrying capacity, stiffness, and mechanical 
inertia (Kerr, 1989). However, it has a smaller 
workspace (Gosselin, 1990) and greater complex- 
ity in the kinematics and dynamics (Sugimoto, 

1987), which has motivated us to design a Double 
Parallel Manipulator (Lee, 1995) (DPM) by 

stacking two Parallel Mechanisms (PMs) verti- 
cally. The DPM achieves simplicity in the 

kinematics and dynamics  by decoupling the 
motion of each PM, and it has a large workspace 
by reducing the number of linear actuators in 
each platform to avoid link interference (Lee and 

Park, 1997). However, Kinematic singularity, 
which is an important issue in mechenism design, 

has not been examined yet. 
The singularities encountered in kinematic 

chains can be divided into three main groups 
(Gosselin and Angeles, 1990). The first kind of 
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singularity occurs when the output link loses one 
or more degrees of freedom, and the second kind 

of singularity arises at configurations where the 
output link is locally movable even when all the 
actuated joints are locked. The third kind of 
singularity is of a slightly different nature than the 
first two since it requires conditions on the lin- 
kage parameters. This corresponds to configura- 
tions in which the chain can undergo finite 

motions when its actuators are locked. 
Singularities are analyzed by the configurations 

at which the Jacobian determinants become zero 
(Gosselin, Perreault and Vaillancourt, 1995). 
This is a laborious procedure that leads to incon- 
clusive results in the PM since the singularities 
cannot be confined to a specific region and also 
cannot be easily geometrically ascertained due to 

the Jacobian matrix's functional complexity. 
Fichter (Fichter, 1986) studied the singular con- 
figurations of a Stewart Platform, While Long 

and Collins (Long and Collins, 1995) 
geometrically analyzed singularities by line 
vectors involved in three pantograph linkages. 
However, they have not examined the relationship 
between singularities and the workspace, which is 
a more practical issue for avoiding singularities. 
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This paper investigates singularity regions with 

respect to the workspace to prove that singular- 
ities of the DPM occur outside the workspace. 

2. Structure of  the D P M  

The DPM is made up of two PMs with a 
central axis as shown in Fig. 1. In the first PM, 
for i =  1, 2, 3, linear actuators LA i are connected 

from Bi of Base-1 to Pi of Platform-I through 

universal joints placed for IlO~,~,.ll=r~ and 

II b , ~ l l  = rex. ~, and Bz are symmetrically locat- 

7" . . . . .  / / oK-,  
/ < \  I I" /'" 

m I ,~ - - ; , -L~ ,_bJf ,  . e,<,,,o ~e, 

,.-o I . . . .  
" " " "~ t  o.1 L I~ kv 

L @~__~ 

]~nd effector Rotary p~.,_~_ ~Z~p 
Actuetor ~ 

Fig. 1 Double parallel manipulator. 
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Linear actuator and central axis. Fig. 2 

ed for ZBa~=l.2)OmB3--~m, and P1 and P2 are 
also symmetric for z: Pi(i=l,2) Opte8= ~P1. Similar- 
ly, for i--4, 5, LA i of the second PM are con- 
nected from Bi of Base.--2 to Pi of Platform-2, 

which are located tbr II O~TN, B,,II-r~2 and P I ~ I I  
= re2, forming angles {'Rz and ~'e2 from the hori- 
zontal axis. OB~(i-- 1, 2) and Oe, ( i=  l, 2) are the 
center points of the bases and platforms, respec- 
tively. As viewed in Fig. 2, the link train of  LA i 

is composed of 011~012-0f3- (~ i4 - - ( f l i5 - -0 f6s  which are 
all passive joints except for the sliding joint 0i.~ 
whice is actively actuated to vary the length of 
LA i. To increase the rotational range of  the 
universal joints, offset links are inserted in the 

upper universal joints of the first PM and in the 
lower joints of the second PM. 

A central axis is comprised of  all passive joints 

01- 0.~- 0a- 04- 05 with offset links inserted in both 
the upper and lower universal joints. While 

01-02-0..3 places platform-I at a desired position 
by constraining the first PM, 04-0~ rotate the 
platform-2 to a desired orientation using the 
second PM. It is important to note the passive 

joint displacements 0~-0~-08 and 04-0~ are decou- 
pied and independently generated by LA i ( i =  1, 

2, 3) and LA i ( i=4 ,  5), respectively. Therefore 
the orientational workspace of  the second PM is 
geometrically decoupled from the positional wor- 

kspace of the first PM. Adding 06 to the second 
PM provides the DPM with 6-degrees of  freedom. 
For kinematic analysis, Cartesian coordinates {i} 
(i=0,. . . ,  6) are assigned to joints of the central 
axis as viewed in Figs. 1 and 2. 

3. Workspace  Analys i s  

Many researchers (Fichter, 1986; Waldron, 
Raghavan and Roth, 1989) depicted the reachable 
workspace of a platform using inverse kinematics. 
Gosselin (Gosselin, 1990) analytically computed 
the workspace volume by dissecting it into sec- 

tional areas to be integrated. The previous works 
focus on the positional workspace which a plat- 
form is able to reach with a fixed orientation. In 

practice, a workspace with the small range of 
possible orientations is generally not useful. 

Hence the orientational workspace must be 
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Table 1. Design parameters of DPM. 

Name 03 mln [~ max 

central 
743 1133 

axis 

Name O~ mm 0i3 max 

LA i 
- 754 1140 

(1=1,2.3) 

LA i 
- 630 

(i=4,5) 
835 

N a m e  

r ~  250 

rm 120 

r~2 80 

rP~ 150 

z = l o ~ . ~ l  730 

cp 20 

~,.=~,~) 120 ~ :/6o"" 

~'~(,=~,z) 120 ~ 45 ~ 

examined. This paper presents a positional and 
an orientational workspace separately, and ana- 
lyzes singularity loci occurring in each space. 

Using the interference decision algorithms der- 
ived by Merlet (Merlet, 1994), we determine the 

design parameters indicated in Table I to maxi- 
mize the workspace avoiding interference. 

It is noted that offset links enlarge the 
rotational range of universal joints but their short 
lengths yield little influence on the workspace and 
singularities. Hence we neglect them but keep the 
wide range from the offset links. The range of 

universal joints with an offset link is 70 ~ but the 
range without oft~et links is reduced to 25 ~ due to 
yoke interference. For a well-designed DPM, 

there is no interference within the ranges of the 
linear actuators. Thus the workspace is obtained 

by comb ining the space generated by the linear 
actuators moving from the minimum to the maxi- 

mum length. 
The position of  Platform-I attained by LA i(i 

= 1, 2, 3) is computed for a positional workspace 
which is described as ~0BI-0~p~. From closed loops 

Os ,B iP iOmOm;  the length of LA i are 

where the superscripts represent the coordinates 
describing vectors and matrices. Let {x, y, z} T= 

T ~ O R 3 ~  OB~Ov, and {Xoi, Yoi, zol) = OB1Bi-- "~ Ov,Pi 
0~8 of Eq. (1) is written as 

0 2 =  (X--Xo~)2 + ( y - - y o 0 2 +  (Z--  Zo~) 2 

( i =  1, 2, 3) (2) 

With ~ {xB~, YB~, zm} r and ~ O v i ~ = { x ~ ,  

y~,',z~} T Xo~, yo~ and zoz are described by 

Xol = XBI -  YllXPi- YI2YPi- ~13~Pi 

Yot = y s ~ -  Yl'~Xm- Y22Yvi- Y23Zpl 

; ~ :  z s i - -  r 2 x x ~ -  r32yr~- r3azP~ (3) 

where r u are elements of ~ expressed by 01, 05 
and 03 Forward kinematics of the central axis 

yields 

x =  6As (8z), y = - O 3 s ( O l )  c(O'z), 

z =  O'~c (01) c (02) (4) 

where s ( . )= s in ( . )  and c ( . ) = c o s ( . ) .  Solving 
for 01, 02 and ~ with x, y and z and substituting 

them into ~ gives 

x 

xf~-i: y~ + z ~ 0 ~/x~ + y~ + z~ 

~ R~- ~ xf~T y,, + z2 

- x z  - y  z 

(5) 

All elements are expressed by a unique solution 

~r 0;(i 1, 2 ) < ~  which is always true at .... ~. < "-- 

because the range of the universal joints should 

sr F o r  Ii rnln :~  0i3 <:7 li ram, Eq. not be beyond --+-2" 

(2) with minimum and maximum lengths is 

respectively rewritten as 

k ~,2 = (x  - x0~) ' + (y  - y03 ~ + ( z -  z03 

( i - 1 ,  2, 3) (6a) 
It max 2 = (X  - -  XOi) 2 ~_ ( y  __ Y0/) 2 _}_ ( Z - -  ZOi) 2 

( i=1 ,  2, 3) (6b) 

The equations represent the spheres where radii 
are L mm 2 and k m,x 2, respectively, with changing 
centers {x0~, y0~, z0~}. For i =  1, 2, 3, the workspace 
is confined to the space betwean an inner sphere 
with radius /i mm and an outer sphere with radius 

[i . . . .  Fixing z = z k  in Eqs(6a) and (6b), we 

obtain 

R i  mln 2 :  (X--XOt) 2-t- (Y--Yoi) 2(i  = l, 2, 3) (7a) 

R~. m~x2= (X--Xo~)2+ ( y - - y 0 3 2 ( i = l ,  2, 3) (7b) 

where 

2 fk2m~n-(Zk--Z~176 /~ 2m'"- (Z~-Z~ >0 l 
R, mf0=~0 for [i 2rain-- (Zk--Z0i)2<S0 J 

2 ~l~ ~m~x-(e~--Z0~) ~ for I~ ~ - -  (z~--z,,)~>O~ 
Ri m~x--(0 for k 2re,x-- (Zk--Z0,)2~0 J 
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These describe circles where radii are R; mJo and 

R~m .... respectively, wilh changing centers {x0~, 

y0~.} yielding ellipsoidal curves, These cause com- 

plications in the workspace analysis of the DPM. 

For  the Stewart Platform workspace expressed by 

Gosselin (Gosselin, 1990), the centers are fixed 

for circles so that the arcs surrounding the sec- 

tional areas are easily found. But the arcs with 

changing centers must be detected by the roots of 

the constraint eqs (7a) and (7b). Closed curves 

formed by the roots x and y are found from 

Simlnmfimjn(X, y) for Rim~n( i=l ,  2, 3) (8a) 

S ~ = f , . m , x ( x ,  y) for R i m , ~ ( i = l ,  2, 3) (8b) 

For  each linear actuator, f~ mm and fz max are 

functions of S~ rnln and S,. . . . .  respectively, re- 

presenting an annular area A~zk. Due to the 

distance of the linear actuators, an actuator 

restricts the regions generated by ihe others. 

Hence the workspace is the common region in 

which all three annular areas are included: 

A~k =A1 ,~ 0 A2 .k (3 A:~ ~ (9) 

To compute Azk surrounded by several arcs, we 

sort the inner and outer boundary arcs with inter- 

secting points and then apply the Gauss Diver- 

gence Tbeibar(Kreyszig,  1982) to compute the 
area.: 

o,, . n~d,% (10) A,.--  

where Q~ is a distance vector from the origin to 

dS~ and n~ is a normal vector to dS~. Since n,. has 

negative or positive directions according to the 

boundaries, A ~  is obtained by subtracting the 

area enclosed by the inner boundary from the 

area enclosed by the outer boundary. Summing 

the sectional areas multiplied by height hk yields 

the volume of  the workspace: 

M 

W p o , = Z  A ~  h~ (11) 
k = 0  

Figure 3 depicts the sectional areas of  the 

positional workspace at Zh=730, 900, and l l00. 

At small heights (z~----730), the annular areaAi  zk 

surrounded by S~rnm and S;max occur because 

both [~ mm and l,. m~x restrict the workspace, but at 

large heights (zh=900, I100) S / r n l n  disappears 

due to no restriction by l,. m,x. A large area is 

$ i ~ Y (ram) 

Y (ram) 

"3 , vuJzJJll t~30 =1 .  [ 011]," 

Fig. 3 

Y ffnm) 

(" 
\ .   .o 00ss., 

Positional workspace of DPM in X-Y plane 
at Zh=730, 900 and 1100. 

acquired at small heights but there is an unreacha- 

ble interior region which is the useful space. 

Hence we sum the sectional areas from Zh= 

800ram to zh=l132mm to get 0.228m ~ for a 

positional workspace with reachable interior 
region. 

Next, we analyze the orientational workspace 

expressed by 04 and 0~ which are the rotated 
angles of platform-2 with respect to base-2. From 

the closed loops Oe.,OBzBtP~Op, for i = 4 ,  5, the 
length of LA i is 

0;,~ =~ IIr0~,2~-- ~2-~P7 + ~  (12) 

where 

o [ c(04) s(&)s(O.d s(O4)c(&)]  
~R.,= I 0 c(O~) - s (&)  

J L--s(04) c(0~)s(&) c(O4)c(&) 
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Fig. 4 Orientational workspace of DPM. 

~ =  { ls ( O,) c ( O~) , - ls ( O~) , ic ( O,) ~: ( os) } 

and l is the fixed distance from 04 to OB,. Sub- 
stituting the minimum and maximum lengths into 

Eq, (12) yields 

l, m ,d=  l l ~ - ~  O ~ ,  + ~ R2rO~,B~ll '~ (13b) 

Curves formed by the roots 04 and 05 of the 

above equations are 

St mln=A mln (04, /~) (14a) 
S~ max=f~ m.x(04, 0S) (14b) 

The common region bounded by S~ mln and S~ 
m.x is the orientational workspace: 

Wor, : A4 ('1A.~ (15) 

Figure 4 shows the orientational workspace 

surrounded by S~ mm and S~ max tbr i=4 ,  5. The 
ranges of 04 and 0s are +75 ~ respectively, which 

is independently generated by LA i(i=-4, 5) and 
decoupled from the positional workspace. 

4. Singularity Analysis 

For a Stewart Platform, the Jacobian can be 

derived using screw theory (Fichter, 1986). How- 
evers a it cannot be directly applied to the DPM 

since velocities are separately generated in the 
first and the second PM. Instead, we use a motor 
(Sugimoto, 1987) defined by the relationship 

between the velocity of a joint and the resultant 

velocity of the plattbrm. If  the velocity of point 
"o" in the platform is { Vp X2p} r generated by a 

unit velocity of joint 0~, then a 6 • 1 motor vector 
is defined as ~ Vp, -C2p} T. The left superscript 
indicates the point where the velocities are in- 
spected and the right subscripts i and j represent 

the numbers for the link train and joint, respec- 

tively. 
From the definition of motor, the velocity of an 

end effector is 

Vel 06 = Ol~176 ~ 32~ "'" + 08~ 
(16) 

where Vel 08, which is a 6xl vector, represents 

the linear and angular velocity of a point O6 

assigned to the end effector. ~176 is the motor of 

joint i of the central axis and 6i~ is the joint 

velocity. Let ~176 ~176176 the joint 
velocities of a central axis are the 

O=~ Vel 06 (17) 

where O-"[01, &, "", &]r. Only velocity & is 
directly controlled by an active joint but the other 

passive velocities 6i~(i=l, 2, ..., 5) must be in- 

directly generated by LA i ( i = l ,  2, ..., 5). To 
compute the linear actuator velocity, we analyze 

the velocities of platform-1 and -2. Due to the 
short length of the offset links, they do not affect 

the velocities much but increase complexity by 
including revolute velocities. Thus we neglect the 
offset links. From the joint velocities and the 
motors of the central axis, the linear velocities of 

point Pi, [ Vel_P~]v, with respect to base-I and 

base-2 are obtained respectively by 

[ Vel_P,]v = ~),[P'Mc,] v + d2["Mc2] v 
3a['~'M~a] ( i = l ,  2, 3) (18) 

[ Vel_P,] v = d4[P'M~,] v + ds["M~5] r 
( i=4,  5) (19) 

where a 3•  vector, [.]v, is the linear velocity 
component of motor [.]. Ignoring the offset link, 

[ VelP~]v  can be projected to the velocity of 

linear actuator: 

d,3 = u ~  Vel_P,],  (20) 

where u~ is the unit vector of linear actuator, 

which is obtained from 

~'=[~;~ " "  "'~J = ~ / l i -  (21) 

Let us define the following matrices formed by 

the motors: 

[Pj~]v[[P'Mc,]v ["M~2]v ["Mc3]v] 
( i=  l, 2, 3) (22) 

[P'Jc]vEE"Mc,,]v ["M~8]v] ( i=4,  5) (23) 
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and combine Eqs (17) to (23) to yield 

[0~a 4a 0a3 t~,3 t)38 O~]'--AsB~~ 1 Vel O~ 
(24) 

where As and B~ are 6•  16 and 16•  matrices, 
respectively, written as 

0 

As .... 

/3.~ = 

0(9x3) 

,i [,,/o]v :, 0 (~ ,  

u3 1 
'uT 

0(7x3~ ! [P~ i 0(3• 
' 0(1• 1 

Therefore, the Jacobian matrix relating Ve[ ()~ 
to the linear actuator velocities is 

f ~= AsB~~ ' (25) 

The Jacobian determinant is 

Det[Js]--Det[AJ3,] Det[~176 1] (26) 

For the singularity analysis of a central axis, we 

use Det[~ rather than Det[~176 since the 
singularity occurs even though Det[~ 
which is simply expressed by 

Det[~ = - 8~ c (&) c (&) (27) 

This involves only three joint displacements & 

(i==2, 3, 5) not causing Det[~176 due to & >  
0 and - 9 0 ~  8,.(i-" 2, 5) <90  ~ which are always 
true because & is the length and 8, 0 =2,  5) are 
the angles of universal joints. Therefore, no singu- 
larity arises from the central axis. 

Next, to examine the singularity of  the PMs, 

De.l[A~t3~] is divided by 0i3: 

Det [ SAB ] - Det [A~B,~]/8,:, (28) 

Partitioning SAl3 to 4 sub-matrices yields 

0,3 3, ] 
0(:,• SD(a• 

As shown, the determinant is decoupled by 

Det[SAB]=Det[FD] Det[SD] (29) 

where Det[FD] and Det[SD] are the determi- 
nants of the first and the second PMs, respective- 
ly, written as Eqs. (30) and (31). 

The first PM singularity is determined by three 

variables 0,.(j=l, 2, 3) for Det[FD]=O, Fig. 5 

shows the singularity loci a~( i=l ,  2) at 0a= 
900ram. Although 0a is varied from 800ram to 
1100mm, the deviations of & and & are less than 
_+1 ~ This indicates that the loci are not influen- 

ced much by 8a. al reveals the cases in which 81-- 

0 ~ and 82--90 ~ while 62 shows the configurations 
at which LA i (i = 1, 2, 3) are close to the plane of 

the Base-I by combining 81 and & to 90 ~ From 

% 

Positional 
Workspace 

0~ (degree) 

Fig. 5 

" - ~ ,  (degree) 

The singularity loci of the first PM. 

Fig. 6 The singularity loci of the second PM. 
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these results, it is found that the singularities in 
the first PM never occur inside the regular work- 
space. 

As shown in Fig. 6, the second PM singularity 

loci a ; ( i=3 ,  4) are found by two roots 04 and 
for Det[SD]=O. When the directions of LA i (i 
~4 ,  5) are collinear on platform-2, singularities 
arise because velocity transformations cannot be 
accomplished. In reality, such configur ations do 
not arise since & is close to +90  ~ causing linear 

[I320armr,,c(~m)c(~m) r 
- 12&r~,+480~ 

60ar~, +24t~ 
Det[FD]= r~c (~m) 6&rmr,, 

32 
160~rmc( ~m) c( ~m) 
12mrg~c (~'m) c(~m) 

3 r~l r~, 

actuators to contact platform-2. These singular- 
ities are depicted by two points of an. When' 
platform-2 is rotated to 90 ~ by combining 04 and 
&, the singularity locus a4 arises. Like the first 
PM, these singularity loci never occur in the 
regular workspace. Therefore all loci o'r 2, 
3, 4) are outside the positional and the 
orientational workspaces presented in Figs. 3 and 
4. This show that the DPM is free from the 
singularity problem within the regular workspace. 

--1+c(201) 
c(O0 

c (0~-20z) +c (&+2&)  
.-.c(O~-&) -c(0~ + 02) +c(Oi- 3&) +c(0a+3&) 

-2c (&)  + c(20~-02) + c(2O~ + &) 
2s(&) +s  (20~- &) - s  (20,+ Oa) 

2s(2&) +s(2(O,-. &)) - s ( 2 ( & + & ) )  
3 s ( O r  &) - 3 s ( & +  &) - s ( O , - 3 & ) +  s(O,+3&) 

(30) 

Det[SD]= 

I2r~2c(~2) ]r[- c(&)+O.5c(204-&)+O.5c(204+Os) 
rg2#zs(~gz) (~'~2) / ] c(&) -0.5c(2&-Os) --0.5C(204~-05) 

rg2r~zs(~B2) c( ~n2) c( ~2) ] I-c(04) +0.5c(04-2&) +0.5c(04+2&) 
, r . ~ # ~ c ~ r  / [ - - s ( & )  +0.5s(O4--Z&) +0.5s(&+2&) 

--lrn2#zc(~,2)c(~2) 3 L s(ZO4--Os)+s(204.+.Os) 

(31) 
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space generated by the first PM and an 
orientational workspace generated by the second 
PM. For each workspace, the singularities are 
analytically examined by the Jacobian matrix 
transforming the velocity of each platform to 
those of the linear actuators. The Jacobian is 
decoupled to a central axis, the first PM and the 
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larity in the central axis occurs but those in the 
first and the second PM arise with distinct loci 
when the combined angles of 0; (i = 1, 2) or 0,. (i = 
4, 5) are close to _+_90 ~ regardless of 0a. 

This indicates that the singularities arise out- 
side the regular workspace. Therefore, it is con- 
cluded that the DPM is free from the singularity 
problem inside its regular workspace. 
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